
A Service-Centric Approach to a Parameterized RBAC Service

JONATHAN KEIRRE ADAMS

Graduate School of Computer and Information Sciences

Nova Southeastern University
3301 College Avenue, Ft. Lauderdale, FL

UNITED STATES
jonaadam@nova.edu,

http://www.scis.nova.edu/~jonaadam

Abstract: - Significant research has been done in the area of Role Based Access Control [RBAC]. Within this

research there has been a thread of work focusing on adding parameters to the role and permissions within

RBAC. The primary benefit of parameter support in RBAC comes in the form of a significant increase in

specificity in how permissions may be granted. This paper focuses on implementing a parameterized

implementation based heavily upon existing standards.

Key-Words: - Access Control Models, Security, Role Based Access Control

1 Introduction
The benefits inherent in role based access control

and its derived access control models make this

paradigm very well suited for use in web-based

applications. As such, this work sets out to create an

extensible access control service for web services.

There are several standards and a body of existing

research in this vein, and this work will seek to build

upon prior successes as much as possible, while

extending the body of work as necessary.

There are many benefits inherent in having a

flexible access control model that is capable of

integrating different factors, for example, contextual

information, into its access control policies. The

addition of parameter support on top of the role

based access control paradigm is an effective means

of reaching this goal. Previous work has shown the

benefit of utilizing contextual information as well as

the overall benefits derived from parameterized

RBAC. An access control service that uses

parameterized role based access control to

implement flexibility and extensibility in its policy

engine will have a variety of applications. The use

of parameterized roles allows a greater degree of

specificity in terms of the access granted to a

specific role. This will reduce the overall amount of

roles, by allowing roles to grant different degrees of

access based upon their parameterized input.

2 Background Information
The problem posed by this paper is the creation and

implementation of an extensible access control

service. To solve this problem, we look at the

existing body of work and find Service-Oriented

Role Based Access Control [SRBAC], a model

derived from RBAC with the intention of providing

access control for web services. Extensible Access

Control Markup Language [XACML] is a critical

standard for expressing access control policies,

requests, and responses. XACML provides an

excellent means of expressing RBAC policies in an

interchangeable format.

This paper will investigate the feasibility of

implementing an access control service based upon a

variety of existing technologies that is reasonably

flexible and extensible. The primary focus of the

work is upon the margining of SRBAC and

XACML. The benefit of having an RBAC approach

to Service Oriented Access Control is work will be

capable of synchronizing access control policy

among a variety of related federated information

sources. Utilizing XACML to implement SRBAC

ensures that it will be adaptable to a variety of

computing environments

Several researchers have explored bringing the

functionality of Role Based Access Control to Web

Services. Their work has taken many forms and has

had differing approaches. In [18], Liu and Chen

craft a model, based upon extensions to RBAC,

called Web Services Role Based Access Control

[WS-RBAC]. This work extends RBAC in taking

into account the Business Process as a context to

how a user attempts to access an object. Services are

treated as objects, and access is largely governed via

Business Processes, which serve as policies, marked

up in Business Process Execution Language for Web

Services [BPEL4WS]. BPEL4WS is a XML based

markup language that is utilized for adding support

mailto:jonaadam@nova.edu
http://www.scis.nova.edu/~jonaadam

for business related web services interaction [19].

Murty and Taylor in [20] devised a framework for

controlling access to web resources utilizing Role

Based Access Control and an XML format for

passing access control information. Their work is

primarily focused on distributing the responsibility

for managing the access control database. Their

work is now somewhat dated due to the fact that

subsequent XML standards, such as XACML have

arisen, yet their work takes a still-relevant approach

to managing access control information, such as

users, objects, etc.

2.1 Role Based Access Control
Role-Based Access Control is a flexible access

control model, primarily notable for its addition of

the notion of roles into access control. Ferriaolo and

Kuhn have said that RBAC is a Mandatory Access

Control [MAC] model, but that it diverges from

MAC in several ways [3]. Many models have been

derived from RBAC to solve a variety of access

control related issues. Role Based Access Control

has evolved significantly over the past decade,

gaining acceptance. The notion of roles in RBAC

provides significant benefit to managing access

control in enterprise environments. RBAC allows

the management of privileges by roles instead of

subjects and supports the principle of least privilege

and separation of duties [11].

A significant benefit to the underlying paradigm of

RBAC is its adaptability to various computing

configurations and constraints used to determine

access control decisions. Researchers have adapted

RBAC for geo-spatial applications, for ubiquitous

computing applications, as well as extending aspects

of the model to support features such as cascading

delegation, negative permissions, and a variety of

others that make the model more flexible and/or

easier to manage in an actual implementation. As the

uses for computing and data increase in diversity,

access control models have been adapted,

significantly increasing in complexity. This is

particularly true in pervasive computing and

distributed computing applications. Because of the

nature of these computing applications, many

assumptions used in crafting an access control

model must be reconsidered. A significant part of

the added complexity comes in the form of

considering other factors. In the case of this work,

the goal is to find a suitable extension of RBAC that

is adaptable to the constraints involved in web

services, while adding the benefits derived from a

parameter based approach to specifying roles.

2.2 Parameterization
In [2], parameterization is adding descriptive

information to roles and privileges to allow greater

flexibility. In terms of privileges, [2] describes

parameterized privileges as 2-tuples, where the first

parameter represents the object to be accessed and

the second parameter represents the access mode for

that object given the privilege. With an object

customerData, and permissions read, write, and null,

example privileges would look like:

• Priv1 = (customerData, read)

• Priv2 = (customerData, write)

• Priv3 = (customerData, null)

Thus, privileges are of the form Privn = (o, pn),

where p is a set of privileges for an object o.

Parameterization also affects the subject portion of

the RBAC equation. In [2], the authors describe

roles with the notation (rname, rpset, rparamset)

where rparamset is the set of role parameters for a

given role with the name rname. The rparamset can

be a null value if the role has no given parameters.

An example role customerDataService that has an

identifying attribute className with possible values

updateCustData, readCustData and, eraseCustData

could be represented as:

• (customerDataService, className,

updateCustData)

• (customerDataService, className,
readCustData)

• (customerDataService, className,
eraseCustData)

In [2], it is notable that PA, the privilege to role

assignment, is represented using XML XPath

notation. Because of this, a privilege to role

assignment example incorporating the above-

explained notation could be represented as:

• pa1 = (//customerDataService[@className =

updateCustData]/customerDataService,update)

• pa2 = (//customerDataService[@className =

updateCustData]/customerDataService,read)

• pa3 = (//customerDataService[@className =
updateCustData]/customerDataService,erase)

For this work, since it will be using XACML, the

approach will differ. XACML links PolicySets using

the <PolicySetIdReference> tag. In XACML 1.x,

RBAC is implemented using linked PolicySets in

this manner. Allowing for parameterization will

simply require more complicated links between

PolicySets. This is represented by examples in the

Fig. 1 and Fig. 2.

<PolicySet xmlns="urn:oasis:names:tc:xacml:1.0:policy"

PolicySetId="RPS:student:role:studentid-02123781"

PolicyCombiningAlgId=
"urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:permit-overrides">

<Target>

<Subjects>

<Subject>

<SubjectMatch MatchId=

"urn:oasis:names:tc:xacml:1.0:function:anyURI-equal">

<AttributeValue DataType=

"http://www.w3.org/2001/XMLSchema#anyURI">

urn:example:role-values:student:rparams:studentid-02123781
</AttributeValue>

<SubjectAttributeDesignator

AttributeId="urn:oasis:names:tc:xacml:1.0:subject:role"

DataType="http://www.w3.org/2001/XMLSchema#anyURI"/>
</SubjectMatch>

<SubjectMatch MatchId=

"urn:oasis:names:tc:xacml:1.0:function:string-equal">

<AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">
studentid-02123781

</AttributeValue>

<SubjectAttributeDesignator

AttributeId="RParams"
DataType="http://www.w3.org/2001/XMLSchema#string"/>

</SubjectMatch>

</Subject>

</Subjects>

</Target>

<PolicySetIdReference>PPS:student:role:studentid-02123781

</PolicySetIdReference>

</PolicySet>

Fig. 1 XACML Representation of Parameterized

Roles

Fig. 2 XACML Representation of a Parameterized

Privilege Instance

2.3 Service Oriented RBAC
Service Oriented Role Based Access Control is a

derivative of Role Based Access Control that is

designed to account for basic RBAC unsuitability

[5] as an access control model for a web services

framework. A notable aspect of SRBAC is the

presence of a function mapping for actors to single

users. In SRBAC, the actor object is designed as a

role activation proxy for a user’s roles [5]. Also of

note is the many-to-many service relation SR [5]. In

SRBAC, services replace the object construct found

in standard RBAC. Thus, the SR relation replaces

the object relation found in RBAC. SRBAC is a

simple and elegant solution to the modification of

RBAC to facilitate controlling access in a service-

oriented environment, such as that of web services.

2.3.1 Reasons for adding parameterization to

SRBAC

Ge and Osborn’s motivation for role

parameterization comes into play for XML

documents where a greater degree of specificity in

determining which data is accessible to specific

users, or user roles, than is possible with standard

RBAC. In terms of web services, the same model

may apply, as these services provide federated

access to data sources and applications that may

need to be constrained in a manner similar to the

XML data sets that Ge and Osborn discuss. This

work will focus on providing an integrated access

control framework for controlling access to multiple

related web services.

An example environment where an integrated access

control framework with the flexibility provided by

parameterized roles would be usable is a federated

data source, such as a service that provides a

dynamic XML or RSS feed of a news source.

Parameterized roles could be used as a means to

customize the content of such a data source based

upon client attributes. Such work has the potential

for the incorporation of such contextual information

as the geographic location of the client or type of

client, i.e. provide one set of content to an end user

with a feed-reader versus a different content set to a

partnering website based upon the user agent

environment variable, which would be passed as a

role parameter. Implementing an integrated role

based access control system with parameterized

roles could be beneficial in tightly filtering visible

information to that absolutely required to be

returned to the end user, based upon their needs as

determined by their role within the framework.

2.3.2 Implementing SRBAC with XACML

The benefit of adding parameterized roles and

privileges to SRBAC would come in the way Actors

are activated. In Ge and Osborn’s [2] paper, they use

the construct of Actors as special proxy roles that

are a part of Simple Object Access Protocol [SOAP]

messages. Actors are activated for each role owned

by a particular user. In this work, we chose not to

use SOAP, thus adding parameter support to Roles

http://www.w3.org/2001/XMLSchema#anyURI
http://www.w3.org/2001/XMLSchema#anyURI
http://www.w3.org/2001/XMLSchema#string
http://www.w3.org/2001/XMLSchema#string

will give us the same net effect, but in a way that

can fit into the existing XACML format with

minimal modification required. The Actor in

SRBAC consists of <user, role, time, constraints>,

it is possible for this work to represent this object

using parameters. This could be done by creating

dynamic roles with parameters represents a user

identifying value, time, and any constraint or

constraints required by a given system of services.

In [5], the authors chose to utilize SOAP messages

as the medium for sending access control requests

and responses, making the proxy role Actor

necessary. However, because this work has utilized

XACML instead of SOAP, the Actor is not

necessary. In order to be true to the model, this work

describes two approaches, one utilizing the Actor,

and another, which does not require it. Essentially,

the Actor is a pseudo-role. Implementing such a

pseudo role in XACML is does not seem to be

directly supported, but is possible by utilizing

multiple requests to generate the credentials

necessary to grant the requested access.

It is notable that, any implementation of the Actor as

described in [5] will require specific application

code to support the proxying of requests. For

example, if a student wants to register for classes,

and the system implements parameterized roles, the

application code that approves the first request will

activate the student’s role and generate a hash or

checksum to validate the request. The application

code will submit a second request using the user’s

activated role as a parameter, that will activate the

Actor, then the access to the object will be allowed.

It is important that this second request have some

verifying information, in our case a hash that is

partially generated by some secret present on the

server, to preserve the system’s integrity.

Without the Actor, it is possible to submit the

request without the secondary request. The second

request does provide a degree of security to the

system, in that the user has already been

authenticated, and that the privilege is not directly

associated with the user’s role. The rationale given

in [5] for having the second request is largely based

upon the reliance on SOAP, which is not a integral

part of this work. The choice to utilize the Actor is

largely a design decision based upon the

implementation needs of the system, balancing

additional security against the additional overhead

of addition request/response traffic. For the purpose

of this work, we will not utilize the Actor.

2.4 Service Oriented RBAC
Extensible Access Control Markup Language is a

standard of the Organization for the Advancement of

Structured Information standards [OASIS] as of

2003. The standard is currently in its second revision

as of February 2005. The goal of this standard is to

provide a flexible, platform independent,

environment independent means for specifying

access control policy for XML content sharing. This

open standard approach has been implemented by a

variety of vendors, to include Sun Microsystems and

the Java 2 Platform, as well as Microsoft’s .NET

environment. The quick acceptance of the XACML

standards by vendors greatly increases its viability

as a means for specifying access control policies in

the web services environment.

2.4.1 Support for RBAC in XACML

It is notable that as of the publication time of

SRBAC, the XACML standard did not directly

support the notion of roles, [5] which are essential in

RBAC and RBAC derived access control models. In

the meantime, support has been added for roles in

the form of an XACML profile for role-based access

control in 2004. This document is specifically

designed to extend XACML such that it will fulfill

the requirements necessary to support RBAC

without changes to the 1.0 or 1.1 standard [7].

With the second release of the XACML

specification, a new profile for role based access

control has been specified. This profile includes the

necessary support for roles, but also, importantly,

specifically supports core RBAC, also called

RBAC0 and hierarchical RBAC, also called RBAC1

[8]. Within the context of this work, adding

parameters to roles does not seem to violate any

aspect of RBAC0 or RBAC1, although in the

implementation, there may issues involved in

formatting parameterized roles such that they will fit

into the XACML implementation framework as

described in this work.

For the implementation phase of this project, the

author chose Sun Microsystems’ XACML

implementation. This is the only widely available

open source implementation of XACML. Sun’s

implementation is Java-based, which helps to make

it the ideal choice for implementing a web-service or

web service enabling library. Sun’s XACML code

also requires an external XML parser, due to some

limitations in the parser (Crimson) that it is included

in Java 1.4.x. Among its limitations, the Crimson

parser does not support XPath.

2.4.2 Use of Parameterized Roles in XACML

Working with XACML version 1, the notion of roles

in RBAC is best handled in a way that this paper

will describe as policy layering. In Policy Layering,

One XACML policy is used to determine which

subjects belong to a role. Other XACML policies

can be linked, and through them, privileges can be

derived.

3 Problem Solution
In this work, the problem consists of several parts

that will be dealt with independently. First is the

implementation of parameterized roles in within a

framework that utilizes XACML. This was expected

to be a potential problem because RBAC that

supports parameterized roles was initially

implemented using SOAP messages as a medium.

This work is specifically focused on using XACML,

as its medium, primarily to facilitate portability into

environments beyond web services. The problem is,

because this work itself does not use SOAP, it is to

some degree, deviating from what the prior research

has done.

3.1 Integrating RBAC and Web Services

XACML and Security Assertion Markup Language

[SAML] have been established as standards for

communicating access control requests and

decisions. SAML handles authentication requests

and responses, while XACML is a markup language

for representing access policy [13]. This work will

depend heavily on XACML. While some

researchers utilize XACML [5], others have taken

alternate approaches, in some cases using SOAP [6].

In this work, the policy based interactions, policy

exchange and access requests and responses are

handled in XACML, but in a web-services

environment, these messages would likely be

encapsulated in SOAP messages. It is notable that

this differs from the approach in Ge and Osborn in

[5. The difference is that the access control attributes

in their work are passed as attributes of the actual

SOAP message, versus encapsulating the access

control request within the message.

4. Conclusion
This work accomplishes three research goals. First,

it proves that XACML can be utilized to

accommodate the notion of parameterized role based

access control. Secondly, XACML can be used to

accommodate Service Oriented Role Based Access

Control, as described in [5] with minor modification.

Finally, it shows how the benefits from

parameterized roles and a service oriented version of

role based access control can be combined to

produce a very flexible access control paradigm for

controlling access to federated sources, such as web

services, without a requirement for modifying SOAP

messages. An access control system such as that

described in this paper could be implemented in a

variety of forms, as a middleware component, as a

module in an application, or as a server side

component in a client-server application. Because of

its protocol independence, a system could benefit

from this access control system utilizing a variety of

communication frameworks, peer-to-peer, client-

server, or otherwise.

To test the basic feasibility of interpreting requests

we first run some basic tests with the XACML

Policy Decision Point. We first use basic XACML

formatted policies and requests to establish for our

purposes how the Sun XACML implementation

handles access requests. A policy is then crafted that

implements both parameterized roles and

parameterized privileges attempting to access

service related objects and run several tests that

confirm that the Sun XACML implementation

responds as expected. Our tests worked as expected

and serve as a basis that can be built upon in

establishing a comprehensive access control

infrastructure that uses parameterized roles and

parameters as a basis for a flexible access control

policy implementation.

4.1 Future Work

There are a few avenues for further research. First,

the actual application of this work to different

application environments, for example, web

services, peer-to-peer environments, as well in

hybrid configurations would be well served by

further treatment. Secondly, building an access

control mechanism based upon the work in this

paper and incorporating the means to provide

enterprise subject, role, service, and object

management facilities is an obvious direction for

follow-on work. Also, much of the work described

in this paper, coupled with an as yet specified

infrastructure could be applied to an enterprise

digital rights management, studying the problems

inherent in such an approach would be a possible

area of study. Another potential area for work would

be in devising a new RBAC model that keeps the

benefits of parameterization of roles, yet is designed

specifically with the requirements of being able to

operate in a variety of distributed systems

environments.

References:

[1] Barkley, J., Kuhn, D., Rosenthal, l., Skall, M., &

Cincotta, A, Role-Based Access Control for the

Web, CALS Expo International & 21st Century

Commerce 1998: Global Business Solutions for

the New Millennium, 1998.

[2] Ge, M. & Osborn, S, A Design for Parameterized

Roles, In Data and Applications Security XVIII:

Status and Prospect, 2004.

[3] Nyachema, M. AND Osborn, S.The Role Graph

Model In Proceedings of the first ACM

Workshop on Role-based Access Control, 1995.

[4] Ventuneac, M., Coffey, T., Salomie, I, A Policy-

Based Security Framework for Web-Enabled

Applications, In Proceedings of the first ACM

Workshop on Role-based Access Control, 2003.

[5] Xu, F., Lin, G., Huang, H., & Hie, L, Role-Based

Access Control System for Web Services, In

Proceedings of Fourth International Conference

on Computer and Information Technology (CIT’

04), 2004.

[6] Koshutanski, H., & Massacci, F, An Access

Control Framework for Business Process for

Web Services, In Proceedings of the 2003 ACM

workshop on XML security, 2003.

[7] Anderson, A, XACML Profile for Role-Based

Access Control: Committee Draft 01, 13

February 2004, Retrieved from url:

http://xml.coverpages.org/OASIS-XACML-

RBACProfile.pdf, Dec 15th 2005.

[8] Anderson, A. Core and Hierarchical Role-Based

Access Control RBAC) Profile of XACML v2.0:

OASIS Standard, 1 February 2005, Retrieved

from url: http://docs.oasis-

open.org/xacml/2.0/access_control-xacml-2.0-

rbac-profile1-spec-is.pdf, Dec 15th 2005.

[9] Ferraiolo, D., & Kuhn, D, Role Based Access

Control, In Proceedings of the15th NIST-NCSC

National Computer Security Conference, 1992.

[10] Sandhu, R, Lattice Based Access Controls,

Computer, 26,11 (Nov. 1993), 1993.

[11] Sampermane, G., Naldurg, P., & Campbell, R,

Access Control for Active Spaces, In

Proceedings of the 18th Annual Computer

Security Applications Conference, 2002.

[12] Power, D., Slaymaker, M., Politou, E., &

Simpson, A, On XACML, Role-Based Access

Control and Health Grids. In Proceedings of the

UK e-Science All-Hands Meeting, 2005.

[13] Naedele, M, Standards for XML and Web

Services Security, Computer, 36,4 (Nov. 2003).

[14] Bhatti, R., Ghafoor, A., Bertino, E., & Joshi, J.,

X-GTRBAC: an XML-based policy specification

framework and architecture for enterprise-wide

access control, ACM Transactions on

Information and System Security (TISSEC), 8,1,

May 2005.

[15] Lorch, M., Proctor, S., Lepro, R., Kafura, D., &

Shah, S., First Experiences using XACML for

access control in distributed systems, In

Proceedings of the 2003 ACM Workshop on

XML Security, 2003.

[16] Zhang, N., Ryan, M., & Guelev, D.,

Synthesising Verified Access Control Systems in

XACML, In Proceedings of the 2004 ACM

Workshop on Formal Method in Security

Engineering, 2004.

[17] Huo, C. & Humenn, P., Dynamically

Authorized Role-Based Access Control for

Secure Distributed Computation, In Proceedings

of the 2002 ACM workshop on XML Security,

2002.

[18] Liu, P. & Chen, Z., An Access Control Model

for Web Services in Business Process, In

Proceedings of the IEEE/WIC/ACM

International Conference on Web Intelligence,

2004.

[19] IBM DEVELOPER WORKS. Business Process

Execution Language for Web Services version

1.1, Retrieved from url: http://www-

128.ibm.com/developerworks/library/specificatio

n/ws-bpel/, Dec 21st 2005.

[20] Taylor, K., & Murtry, J., Implementing Role

Based Access Control for Federated Information

Systems on the Web, In Proceedings of the

Austrailasian Information Security Workshop on

ACSW frontiers 2003 – Volume 21, 2003.

http://xml.coverpages.org/OASIS-XACML-
http://docs.oasis-/
http://www-/

	1 Introduction
	2 Background Information
	2.1 Role Based Access Control
	2.2 Parameterization
	2.3 Service Oriented RBAC
	2.3.1 Reasons for adding parameterization to SRBAC
	2.3.2 Implementing SRBAC with XACML

	2.4 Service Oriented RBAC
	2.4.1 Support for RBAC in XACML

	3 Problem Solution
	3.1 Integrating RBAC and Web Services

	4. Conclusion
	4.1 Future Work

